- یک بردار و یک حرکت براونی – بعدی با ماتریس کواریانس وجود دارد به طوری که
که در آن
سه تایی را سه تایی مشخصه یا سه تایی فرایند می نامند.[۲۴]
در هر بازه ی زمانی متناهی، فرایند در (۱)، فقط تعداد متناهی پرش با اندازه ی بزرگتر از واحد دارد. مجموع این تعداد متناهی پرش ها را می توان به صورت نوشت. به همین ترتیب مجموع پرش های با اندازه ی بزرگتر از و کمتر از یک، عبارت است از امّا حد این عبارت هنگامی که ، ممکن است واگرا باشد. استدلال لوی آن بود که تمایز بین تجمع تعداد بسیار زیادی از پرش های با اندازه ی کوچک و حرکات تعینی بسیار شدید، دشوار است. به این دلیل لازم است عبارت
را به جای ، در نظر گرفت که در آن دنباله ای از مارتینگل های انتگرال پذیر با میانگین صفرهستند این دنباله در میانگین مربعی همگرا به یک مارتینگل به صورت است، و اندازه تصادفی پواسون جبران شده است، که در بخش ۱-۷ تعریف شد.
حال با شناخت از ساختار فرایند لوی می توان تابع مشخصه ی آن را به دست آورد.
۲-۱-۱۰ قضیه (نمایش لوی – خینچن[۳۰]): اگر یک فرایند لوی روی با سه تایی مشخصه ی باشد، آن گاه
وقتی
اثبات: با توجه به تجزیه ی لوی-ایتو داریم که متغیر تصادفی (تقریباً همه جا) به ، وقتی که به صفر میل می کند، همگراست و از همگرایی (تقریباً همه جا) همگرایی در توزیع را نتیجه می گیریم. بنابراین با توجه به قضیه ی ۱-۵-۲، نتیجه می گیریم که تابع مشخصه ی به تابع مشخصه ی همگرا است . چون مستقل هستند وبا توجه به ۲-۱-۵، ۲-۱-۶ و ۲-۱-۷ داریم:
( اینجا فقط تکه ای از متن پایان نامه درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )
اگر برای هر را به سمت صفر میل دهیم، اثبات کامل می شود( . ضرب داخلی است).
برای فرایندهای لوی حقیقی مقداریک بعدی، فرمول لوی- خینچن به صورت زیر است:
۲-۲ ارتباط بین فرایندهای لوی وفرایندهای مارکوف[۳۱]:
۲-۲-۱ (فرایند مارکوف): به فرایندی یک فرایند مارکوف گویند که داشتن حال آینده را از گذشته مستقل کند، به عبارت دیگر اگر یک فضای احتمال، مجهز به فیلتراسیون باشد و همچنین
یک فرایند سازگار باشد. را یک فرایند مارکوف می نامند اگر برای همه ی
و هر ۰
[۸].
۲-۲-۲ قضیه : فرض کنیم یک فرایند لوی باشد، آن گاه یک فرایند مارکوف است .
اثبات : [۸].
۲-۲-۳ قضیه (خاصیت قوی مارکوف): اگر یک فرایند لوی و یک زمان توقف باشند، آن گاه روی ، فرایند با تعریف (به ازای هر ) : ۱) یک فرایند لوی مستقل از است. ۲) برای هر ، دارای توزیع یکسان با می باشد. ۳) دارای مسیرهای نمونه ای کادلاگ است وهمچنین – سازگار می باشد.
اثبات: ( قضیه ی (۲٫۲٫۱۱) [۸]).
۲-۲-۴ تعریف(هسته ی انتقالی[۳۲]): هسته ی انتقالی از فرایند به صورت زیر تعریف می شود:
در واقع تعریف بالا احتمال انتقال از نقطه ی در زمان به مجموعه ی ، در زمان است.[۸]
۲-۲-۵ قضیه(معادله ی چپمن- کلموگورف[۳۳]): اگریک فرایند مارکوف باشد،آن گاه برای هر و :
با توجه به تعریف هسته ی انتقالی به آسانی می توان نتیجه گرفت که هسته ی انتقالی فرایندهای لوی در زمان و فضا همگن است، یعنی
۲-۲-۶ تعریف: خانواده دو پارامتری از عملگرهای خطی روی به صورت زیر تعریف می شود، وقتی یک فرایند مارکوف است:
[۸].
از ویژگی های مارکوف نتیجه می شود که این خانواده یک دستگاه تحولی[۳۴] تشکیل می دهد، به این معنی که برای هر ، معادله ی برقرار است. حال اگر تعریف شود ، آن گاه ویژگی تحولی به ویژگی نیم گروهی[۳۵]، ، تبدیل می شود.[۸]
۲-۲-۷ تعریف(فرایندهای فلر[۳۶]): یک فرایند مارکوف همگن را یک فرایند فلر گویند، اگر
وقتی فضای باناخ مرکب از توابع پیوسته روی است که در بی نهایت صفرند.[۸]
۲-۲-۸ قضیه: اگر نیم گروه در خاصیت فلر صدق کند، آن گاه مولد بی نهایت کوچک[۳۷] برای این نیم گروه وجود دارد که به صورت زیر تعریف می شود:
جایی که همگرایی در حالت نرم سوپریمم روی C0 است و نیز باید وجود داشته باشد. [۸]
۲-۲-۹ قضیه: فرایند لوی یک فرایند فلر است.
اثبات: [۸].
حال می توان یک مولد بی نهایت کوچک برای فرایندهای لوی ارائه داد.
۲-۲-۱۰ قضیه(مولد بی نهایت کوچک فرایندهای لوی): اگر یک فرایند لوی با سه تایی مشخصه ی روی باشد، آن گاه مولد بی نهایت کوچک ، ، به صورت زیر به دست می آید:
عبارت بالا برای با محمل فشرده خوش تعریف است. که در آن فضای توابع دو بار مشتق پذیر و پیوسته که در بی نهایت صفرند، می باشد.[۲۴]
۲-۲-۱۱ نتیجه: فرض کنیم شرایط قضیه ی بالا برقرار باشند و همچنین به ازای هر ، آن گاه مولد بی نهایت کوچک یعنی به صورت زیر است:
۲-۳ فرایندهای لوی و مارتینگل ها
یکی از مفاهیم تئوری احتمال و ریاضیات مالی ، مفهوم مارتینگل است که در بخش ۱-۴ به آن پرداخته شد.
۲-۳-۱ قضیه: اگر یک فرایند لوی با سه تایی مشخصه ی باشد: الف) یک مارتینگل است،اگر و فقط اگر ،
ب) مارتینگل است، اگر و فقط اگر،
[۲۴].
۲-۳-۲ تعریف(فرایندهای تبعی[۳۸]): هر فرایند لوی یک بعدی که با احتمال یک غیرنزولی باشد ، یک فرایند تبعی نامیده می شود . برای این فرایندها ، تبدیل فوریه ی تعریف کننده ی تابع مشخصه را می توان ادامه ی تحلیلی داد تا تبدیل لاپلاس آن به صورت
به دست آید. که در آن